GCE AS/A level

WJEC
0973/01

MATHEMATICS - C1
 Pure Mathematics

A.M. MONDAY, 13 January 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A and B have coordinates $(6,-2)$ and $(4,1)$, respectively.

The line L_{1} passes through the point B and is perpendicular to $A B$.
(a) (i) Find the gradient of $A B$.
(ii) Find the equation of L_{1}.
(b) The line L_{2} passes through A and has equation $x-8 y-22=0$.

The lines L_{1} and L_{2} intersect at the point C.
(i) Show that C has coordinates $(-2,-3)$.
(ii) Find the coordinates of the mid-point of $A C$.
(iii) Find the area of triangle $A B C$, simplifying your answer.
2. Simplify $\frac{3 \sqrt{3}-2 \sqrt{5}}{2 \sqrt{3}+\sqrt{5}}$.
3. The curve C has equation $y=\frac{20}{x}+2 x^{2}-11$. The point P has coordinates $(2,7)$ and lies on C. Find the equation of the normal to C at P.
4. Show that $x^{2}+1 \cdot 6 x-24 \cdot 36$ may be expressed in the form $(x+p)^{2}-25$, where p is a constant whose value is to be found.
Hence solve the quadratic equation $x^{2}+1 \cdot 6 x-24 \cdot 36=0$.
5. (a) Use the binomial theorem to express $(1+\sqrt{6})^{5}$ in the form $a+b \sqrt{6}$, where a, b are integers whose values are to be found.
(b) The coefficient of x^{2} in the expansion of $(1+3 x)^{n}$ is 495. Given that n is a positive integer, find the value of n.
6. Given that the quadratic equation

$$
(2 k-3) x^{2}+8 x+(2 k+3)=0
$$

has no real roots, show that k satisfies an inequality of the form

$$
m-n k^{2}<0
$$

where m, n are integers whose values are to be found.
Hence find the range of values of k such that the quadratic equation

$$
(2 k-3) x^{2}+8 x+(2 k+3)=0
$$

has no real roots.
7. Figure 1 shows a sketch of the graph of $y=f(x)$. The graph has a maximum point at $(2,6)$ and intersects the x-axis at the points $(-4,0)$ and $(8,0)$.

Figure 1
(a) Sketch the graph of $y=f(x-3)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis.
(b) Figure 2 shows a sketch of the graph having one of the following equations with an appropriate value of p, q or r.

$$
\begin{aligned}
& y=f(x)+p, \text { where } p \text { is a constant } \\
& y=f(q x), \text { where } q \text { is a constant } \\
& y=r f(x), \text { where } r \text { is a constant }
\end{aligned}
$$

Figure 2
Write down the equation of the graph sketched in Figure 2, together with the value of the corresponding constant.
8. (a) Given that $y=7 x^{2}-6 x-3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Given that $y=a x^{\frac{4}{3}}+24 x^{\frac{1}{2}}$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{11}{2}$ when $x=64$, find the value of the constant a.
9. (a) When $a x^{3}+13 x^{2}-10 x-24$ is divided by $x+3$, the remainder is -39 . Write down an equation satisfied by a and hence show that $a=6$.
(b) Solve the equation $6 x^{3}+13 x^{2}-10 x-24=0$.
10. The curve C has equation

$$
y=-2 x^{3}+12 x^{2}-18 x+5
$$

(a) Find the coordinates and the nature of each of the stationary points of C.
(b) Sketch C, indicating the coordinates of each of the stationary points.
(c) Given that the equation

$$
-2 x^{3}+12 x^{2}-18 x+5=k
$$

has three distinct real roots, find the range of possible values for k.

